Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-(4-Pyridyl)-1,3,4-thiadiazol-2-amine

Yao Wang, Rong Wan,* Feng Han, Peng Wang and Bin Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: rwan@njut.edu.cn

Received 17 March 2009; accepted 18 April 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.067; wR factor = 0.142; data-to-parameter ratio = 13.9.

The title compound, $C_7H_6N_4S$, was synthesized by reacting pyridine-4-carboxylic acid and thiosemicarbazide. The asymmetric unit contains two independent molecules, which present different conformations, the dihedral angles between the thiadiazole and pyridine rings being 18.2 (2) and 30.3 (2)°. In the crystal, intermolecular $N-H\cdots N$ hydrogen bonds involving the amine groups as donors link molecules into a two-dimensional framework.

Related literature

For the biological activity of 1,3,4-thiadiazoles, see: Nakagawa *et al.* (1996); Wang *et al.* (1999). For the structure of 2-amino-5-phenyl-1,3,4-thiadiazole, see: Öztürk *et al.* (2004).

Experimental

Crystal data

 $\begin{array}{l} C_{7}H_{6}N_{4}S\\ M_{r}=178.22\\ \text{Monoclinic, }P2_{1}/c\\ a=14.794 \ (3) \ \text{\AA}\\ b=10.686 \ (2) \ \text{\AA}\\ c=10.477 \ (2) \ \text{\AA}\\ \beta=106.52 \ (3)^{\circ} \end{array}$

 $V = 1587.9 \text{ (5) } \text{\AA}^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.35 \text{ mm}^{-1}$ T = 293 K $0.20 \times 0.10 \times 0.10 \text{ mm}$

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.933, T_{\max} = 0.966$
3203 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.142$ S = 1.003023 reflections 217 parameters 3023 independent reflections 1516 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ 3 standard reflections every 200 reflections intensity decay: 1%

 $\begin{array}{l} \text{43 restraints} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.24 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -0.31 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N4A - H4A \cdots N1B^{i}$	0.86	2.08	2.940 (5)	177
$N4A - H4B \cdot \cdot \cdot N2A^{ii}$	0.86	2.21	3.053 (5)	166
$N4B - H8A \cdots N1A^{iii}$	0.86	2.10	2.945 (5)	168
$N4B - H8B \cdots N2B^{iv}$	0.86	2.13	2.988 (5)	178

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + 1, y + \frac{1}{2}, -z - \frac{1}{2}$; (iv) $-x + 1, y - \frac{1}{2}, -z - \frac{1}{2}$.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1989); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo,1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank Professor Hua-qin Wang of the Analysis Centre, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2224).

References

- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004). *Acta Cryst.* E**60**, 0820–0821.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905. supplementary materials

Acta Cryst. (2009). E65, o1099 [doi:10.1107/S1600536809014470]

5-(4-Pyridyl)-1,3,4-thiadiazol-2-amine

Y. Wang, R. Wan, F. Han, P. Wang and B. Wang

Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing a broad spectrum of biological activity (Nakagawa *et al.*, 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang *et al.*, 1999).

The asymmetric unit of the title compound contains two independent molecules (A and B, see Fig. 1), with bond lengths and angles in expected ranges. (Öztürk *et al.*, 2004). Dihedral angles between thiadiazole and pyridine rings are different in each molecule: 18.2 (2)° for molecule A and 30.3 (2)° in molecule B. In the crystal, molecules are linked through N—H…N hydrogen bonds, forming a two-dimensional supramolecular structure.

Experimental

4-Pyridinecarboxylic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 363 K for 6 h. After cooling, the crude product precipitated and was filtered. Pure compound was obtained by crystallization from ethanol. Crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

All H atoms were placed geometrically with C—H and N—H bond lengths fixed to 0.93 and 0.86 Å, respectively, and included in the refinement in the riding motion approximation, with $U_{iso}(H) = 1.2 U_{eq}(\text{carrier atom})$. In the B molecule, displacement parameters for atoms C3B/C4B/C5B/C6B/N4B/C7B were restrained to approximate an isotropic behaviour, and a rigid bond restraint was applied to fragments C3B/C4B/C5B/C6B and N4B C7B.

Figures

Fig. 1. A view of the molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates an intramolecular C—H…S hydrogen bond.

Fig. 2. Partial packing view showing the hydrogen bonds network. Dashed lines indicate intermolecular N—H···N hydrogen bonds.

5-(4-Pyridyl)-1,3,4-thiadiazol-2-amine

Crystal data	
C7H6N4S	$F_{000} = 736$
$M_r = 178.22$	$D_{\rm x} = 1.491 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 543 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 14.794 (3) Å	Cell parameters from 25 reflections
b = 10.686 (2) Å	$\theta = 9-12^{\circ}$
c = 10.477 (2) Å	$\mu = 0.35 \text{ mm}^{-1}$
$\beta = 106.52 \ (3)^{\circ}$	T = 293 K
$V = 1587.9 (5) \text{ Å}^3$	Block, colorless
Z = 8	$0.20 \times 0.10 \times 0.10 \text{ mm}$

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.042$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 26.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.4^{\circ}$
T = 293 K	$h = -18 \rightarrow 17$
$\omega/2\theta$ scans	$k = -13 \rightarrow 0$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 12$
$T_{\min} = 0.933, T_{\max} = 0.966$	3 standard reflections
3203 measured reflections	every 200 reflections
3023 independent reflections	intensity decay: 1%
1516 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R[F^2 > 2\sigma(F^2)] = 0.067$	H-atom parameters constrained
$wR(F^2) = 0.142$	$w = 1/[\sigma^2(F_0^2) + (0.0435P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
3023 reflections	$\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$
217 parameters	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
43 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
SA	0.08251 (8)	0.54450 (10)	0.19829 (12)	0.0483 (4)
N1A	0.3034 (3)	0.3300 (4)	-0.0749 (4)	0.0551 (11)
N2A	0.0328 (3)	0.3203 (3)	0.1338 (4)	0.0513 (10)
N3A	-0.0258 (2)	0.3605 (3)	0.2081 (4)	0.0509 (10)
N4A	-0.0553 (2)	0.5382 (3)	0.3223 (3)	0.0548 (11)
H4A	-0.0999	0.5013	0.3454	0.066*
H4B	-0.0408	0.6143	0.3462	0.066*
C1A	0.2262 (3)	0.2621 (5)	-0.0932 (4)	0.0604 (14)
H1B	0.2192	0.1944	-0.1510	0.073*
C2A	0.3105 (3)	0.4259 (5)	0.0056 (5)	0.0601 (14)
H2B	0.3635	0.4769	0.0204	0.072*
C3A	0.2430 (3)	0.4551 (4)	0.0697 (4)	0.0485 (12)
H3B	0.2515	0.5243	0.1256	0.058*
C4A	0.1643 (3)	0.3827 (4)	0.0511 (4)	0.0393 (11)
C5A	0.1561 (3)	0.2820 (4)	-0.0357 (4)	0.0549 (13)
H5A	0.1038	0.2296	-0.0538	0.066*
C6A	0.0928 (3)	0.4040 (4)	0.1217 (4)	0.0413 (11)
C7A	-0.0070 (3)	0.4754 (4)	0.2470 (4)	0.0396 (11)
SB	0.43176 (9)	0.68957 (10)	-0.17070 (12)	0.0505 (4)
N1B	0.2053 (3)	0.9156 (4)	0.0901 (4)	0.0573 (11)
N2B	0.4342 (3)	0.9258 (3)	-0.1864 (4)	0.0518 (11)
N3B	0.4926 (2)	0.8856 (3)	-0.2569 (4)	0.0489 (10)
N4B	0.5574 (2)	0.7052 (3)	-0.3157 (3)	0.0456 (10)
H8A	0.5907	0.7475	-0.3556	0.055*
H8B	0.5607	0.6249	-0.3136	0.055*
C1B	0.1980 (3)	0.8094 (5)	0.0207 (5)	0.0562 (13)
H8C	0.1499	0.7540	0.0226	0.067*
C2B	0.2762 (3)	0.9914 (4)	0.0858 (4)	0.0577 (13)
H9A	0.2837	1.0650	0.1352	0.069*
C3B	0.3375 (3)	0.9687 (4)	0.0150 (4)	0.0507 (12)
H10A	0.3841	1.0269	0.0141	0.061*
C4B	0.3308 (3)	0.8588 (4)	-0.0563 (4)	0.0362 (10)
C5B	0.2573 (3)	0.7782 (4)	-0.0528 (4)	0.0506 (12)
H12A	0.2489	0.7035	-0.1003	0.061*
C6B	0.3977 (3)	0.8349 (4)	-0.1355 (4)	0.0389 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C7B	0.4998 (3)	0.7650 (4)	-0.256	63 (4)	0.0380 (10)	
Atomic displac	cement parameters	$s(A^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
SA	0.0477 (7)	0.0469 (7)	0.0499 (8)	-0.0047 (6)	0.0134 (6)	-0.0041 (6)
N1A	0.054 (3)	0.071 (3)	0.041 (2)	0.013 (2)	0.015 (2)	-0.002 (2)
N2A	0.045 (2)	0.057 (2)	0.047 (2)	-0.001 (2)	0.005 (2)	-0.003 (2)
N3A	0.046 (2)	0.049 (2)	0.056 (3)	-0.0055 (19)	0.012 (2)	0.003 (2)
N4A	0.058 (3)	0.065 (3)	0.050 (3)	-0.012 (2)	0.028 (2)	0.000 (2)
C1A	0.054 (3)	0.080 (4)	0.043 (3)	-0.004 (3)	0.006 (3)	-0.024 (3)
C2A	0.043 (3)	0.067 (4)	0.071 (4)	0.004 (3)	0.018 (3)	0.011 (3)
C3A	0.046 (3)	0.052 (3)	0.046 (3)	-0.003 (2)	0.011 (2)	-0.004 (2)
C4A	0.029 (2)	0.050 (3)	0.031 (3)	0.003 (2)	-0.006 (2)	0.006 (2)
C5A	0.041 (3)	0.076 (4)	0.041 (3)	-0.001 (3)	0.001 (2)	-0.014 (3)
C6A	0.036 (3)	0.048 (3)	0.037 (3)	-0.004 (2)	0.004 (2)	0.007 (2)
C7A	0.035 (2)	0.046 (3)	0.032 (2)	0.009 (2)	0.002 (2)	0.012 (2)
SB	0.0587 (8)	0.0404 (6)	0.0564 (8)	0.0000 (6)	0.0229 (7)	0.0013 (6)
N1B	0.048 (3)	0.069 (3)	0.055 (3)	0.010 (2)	0.015 (2)	0.007 (2)
N2B	0.056 (3)	0.038 (2)	0.065 (3)	0.0007 (19)	0.022 (2)	0.003 (2)
N3B	0.049 (2)	0.045 (2)	0.055 (3)	0.0003 (19)	0.019 (2)	-0.004 (2)
N4B	0.063 (2)	0.036 (2)	0.047 (2)	0.0107 (18)	0.031 (2)	0.0063 (18)
C1B	0.039 (3)	0.069 (3)	0.060 (3)	-0.009 (3)	0.013 (3)	0.007 (3)
C2B	0.063 (3)	0.058 (3)	0.057 (3)	-0.006(3)	0.025 (3)	-0.004 (3)
C3B	0.046 (3)	0.055 (3)	0.053 (3)	-0.008(2)	0.017 (2)	-0.007(2)
C4B	0.031 (2)	0.039 (2)	0.034 (2)	0.0008 (19)	0.002 (2)	-0.001(2)
C5B	0.047 (3)	0.046 (3)	0.059 (3)	-0.002(2)	0.016 (2)	0.001 (2)
C6B	0.035 (2)	0.042 (2)	0.034 (2)	-0.001(2)	0.001 (2)	0.001 (2)
C7B	0.033 (2)	0.037 (2)	0.036 (2)	0.002 (2)	-0.003 (2)	0.005 (2)
Geometric par	ameters (Å, °)					
SA—C7A		1.716 (4)	SB—C	26B	1.7	(05 (4)
SA—C6A		1.729 (4)	SB—C	27B	1.7	26 (4)
N1A—C2A		1.312 (5)	N1B—	-C1B	1.3	35 (5)
N1A—C1A		1.320 (5)	N1B—	-C2B	1.3	36 (5)
N2A—C6A		1.292 (5)	N2B—	-C6B	1.2	298 (5)
N2A—N3A		1.387 (4)	N2B—	-N3B	1.3	56 (4)
N3A—C7A		1.298 (5)	N3B—	-C7B	1.2	.93 (5)
N4A—C7A		1.380 (5)	N4B—	-C7B	1.3	649 (4)
N4A—H4A		0.8600	N4B—	-H8A	0.8	8600
N4A—H4B		0.8600	N4B—	-H8B	0.8	8600
C1A—C5A		1.356 (6)	C1B—	-C5B	1.3	63 (6)
C1A—H1B		0.9300	C1B—	-H8C	0.9	9300
C2A—C3A		1.389 (6)	C2B—	-C3B	1.3	347 (5)
C2A—H2B		0.9300	C2B—	-H9A	0.9	9300
C3A—C4A		1.365 (5)	C3B—	-C4B	1.3	80 (5)
СЗА—НЗВ		0.9300	C3B—	H10A	0.9	9300
C4A—C5A		1.392 (5)	C4B—	-C5B	1.3	96 (5)

C4A—C6A	1.470 (5)	C4B—C6B	1.483 (5)
C5A—H5A	0.9300	C5B—H12A	0.9300
C7A—SA—C6A	86.7 (2)	C6B—SB—C7B	86.5 (2)
C2A—N1A—C1A	115.6 (4)	C1B—N1B—C2B	116.1 (4)
C6A—N2A—N3A	113.4 (4)	C6B—N2B—N3B	113.0 (3)
C7A—N3A—N2A	110.9 (3)	C7B—N3B—N2B	112.2 (4)
C7A—N4A—H4A	120.0	C7B—N4B—H8A	120.0
C7A—N4A—H4B	120.0	C7B—N4B—H8B	120.0
H4A—N4A—H4B	120.0	H8A—N4B—H8B	120.0
N1A—C1A—C5A	126.0 (5)	N1B—C1B—C5B	123.4 (4)
N1A—C1A—H1B	117.0	N1B—C1B—H8C	118.3
C5A—C1A—H1B	117.0	C5B—C1B—H8C	118.3
N1A—C2A—C3A	123.2 (5)	N1B—C2B—C3B	124.5 (5)
N1A—C2A—H2B	118.4	N1B—C2B—H9A	117.7
СЗА—С2А—Н2В	118.4	СЗВ—С2В—Н9А	117.7
C4A—C3A—C2A	120.4 (4)	C2B—C3B—C4B	119.7 (4)
C4A—C3A—H3B	119.8	C2B—C3B—H10A	120.2
C2A—C3A—H3B	119.8	C4B—C3B—H10A	120.2
C_{3A} C_{4A} C_{5A}	116 3 (4)	C3B-C4B-C5B	116 6 (4)
C_{3A} C_{4A} C_{6A}	123 2 (4)	C3B - C4B - C6B	119.5 (4)
C5A - C4A - C6A	120.5(4)	C5B - C4B - C6B	123.9 (4)
C1A - C5A - C4A	118 5 (5)	C1B $C5B$ $C4B$	1197(4)
C1A - C5A - H5A	120.8	C1B $C5B$ $H12A$	120.2
C4A = C5A = H5A	120.8	C4B— $C5B$ — $H12A$	120.2
$N2\Delta - C6\Delta - C4\Delta$	123.7(4)	$N^{2}B$ $C^{6}B$ $C^{4}B$	120.2 121 5 (4)
N2A - C6A - SA	123.7(4) 113.7(3)	N2B_C6B_SB	121.3(+) 114.2(3)
C4A - C6A - SA	122.6 (3)	C4B - C6B - SB	114.2(3) 1243(3)
N3A = C7A = N4A	122.0(3) 122.7(4)	N3B-C7B-N4B	124.3(3) 1221(4)
$N_{3} = C_{7} = S_{4}$	122.7(4) 115.3(3)	N3B_C7B_SB	122.1(+) 114.1(3)
NJA = C7A = SA	121.9 (3)	MB = C7B = SB	114.1(3) 123.8(3)
	121.9(5)	CAR NOR NOR COR	125.0(5)
COA = N2A = N3A = C/A	0.9 (5)	COB = N2B = N3B = C/B	-0.7(6)
C_{2A} NIA C_{2A} C_{2A}	-1.0(7)	CIP_NIB_CIP_C3P	-0.9(7)
CIA— NIA — $C2A$ — $C3A$	0.8 (7)	CIB-NIB-C2B-C3B	1.0(/)
NIA = C2A = C3A = C4A	0.1 (/)	NIB = C2B = C3B = C4B	-2.1(8)
C_{2A} C_{3A} C_{4A} C_{5A}	-1.0(6)	C_{2B} C_{3B} C_{4B} C_{5B}	1.7 (0)
C_{2A} C_{3A} C_{4A} C_{6A}	1/0.4 (4)	C2B-C3B-C4B-C0B	1/9.5 (4)
NIA - CIA - CSA - C4A	0.1 (8)	NIB - CIB - CSB - C4B	0.7(7)
C_{3A} C_{4A} C_{5A} C_{1A}	0.9 (6)	C_{3B} C_{4B} C_{5B} C_{1B}	-1.1 (6)
C6A - C4A - C5A - C1A	-1/6.6(4)	C_{0B} C_{4B} C_{0B} C_{1B}	-1/8.6(4)
N3A - N2A - C6A - C4A	1/8.1 (4)	N3B = N2B = C6B = C4B	-1/9.1(4)
$N_{3}A - N_{2}A - C_{6}A - S_{6}A$	-1.2(5)	N3B—N2B—C6B—SB	-0.4 (5)
$U_{3}A - U_{4}A - U_{6}A - N_{2}A$	-160./(4)	$C_{5B} = C_{4B} = C_{6B} = N_{2B}$	-29.4 (6)
USA—U4A—U6A—N2A	16. / (6)	C5B-C4B-C6B-N2B	147.9 (4)
$U_3A - U_4A - U_6A - SA$	18.5 (6)	C3B-C4B-C6B-SB	152.0 (3)
USA-U4A-U6A-SA	-164.1(3)	CSB-C4B-C6B-SB	-30.7 (6)
C/A—SA—C6A—N2A	0.9 (3)	C/B—SB—C6B—N2B	1.0 (3)
C'/A—SA—C6A—C4A	-17/8.4 (4)	C/B—SB—C6B—C4B	179.7 (4)
N2A—N3A—C7A—N4A	179.9 (4)	N2B—N3B—C7B—N4B	-177.2 (4)

supplementary materials

N2A—N3A—C7A—SA C6A—SA—C7A—N3A C6A—SA—C7A—N4A	-0.2 (5) -0.4 (3) 179.6 (4)	N2B—N3B—C7B—SB C6B—SB—C7B—N3B C6B—SB—C7B—N4B		1.5 (5) -1.4 (3) 177.3 (4)	
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
C3A—H3B···SA	0.93	2.82	3.191 (5)	105	
N4A—H4A…N1B ⁱ	0.86	2.08	2.940 (5)	177	
N4A—H4B…N2A ⁱⁱ	0.86	2.21	3.053 (5)	166	
N4B—H8A…N1A ⁱⁱⁱ	0.86	2.10	2.945 (5)	168	
N4B—H8B····N2B ^{iv}	0.86	2.13	2.988 (5)	178	
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1/2$; (ii) $-x$, $y+1/2$, $-z+1/2$; (iii) $-x+1$, $y+1/2$, $-z-1/2$; (iv) $-x+1$, $y-1/2$, $-z-1/2$.					

Fig. 1

Fig. 2

